

Groupe de Travail Envirobat

Réflexions autour de l'impact de la parcelle dans le calcul de l'indicateur carbone

Objectifs du GT

Remonter les enjeux spécifiques à l'impact carbone de la parcelle aux groupes d'expertise de la DHUP Atelier participatif pour recenser et consigner les problématiques et/ ou bonnes pratiques des acteurs

rendu transmis aux différentes entités pour permettre des commentaires complémentaires au besoin

Parole ouverte : échanges, questions, écoute, respect

Ordre du jour

Thèmes proposés pour lancer l'atelier

Pourquoi et comment prendre en compte la parcelle? Détail du lot VRD Etude des statistiques opérations obtenues sur l'expérimentation Focus sur des opérations représentatives

Prise en compte de la parcelle

Pourquoi?

L'objectif de l'ACV est de quantifier l'empreinte carbone d'un projet de bâtiment
→ le projet concerne bien un bâtiment et des aménagements

- Finalités d'une ACV globale
 - Innovation, Eco-conception,
 - Eviter les reports de pollution à l'extérieur,
 - Encourager la production de déclarations environnementales (FDES, PEP)
 - Analyser la vulnérabilité d'un projet aux enjeux environnementaux et économiques associés,
 - Démarche complémentaire à celles d'analyse de la valeur
 - Légitimer les projets d'éco conception (stratégie de développement des produits, appui à la communication environnementale)
- Forces de l'ACV
 - Robustesse scientifique de la méthode
 - Prise en compte des impacts directs et indirects (multicritères)
- Faiblesses
 - Démarche importante pour le fabricant nécessitant une réelle mobilisation en entreprise
 - Données environnementales toujours en construction

Prise en compte de la parcelle

Comment?

- Prise en compte de la parcelle cadastrale
 - Délimiter la parcelle vis-à-vis des espaces associés à d'autres projets ou à la voirie communale
- Impact sur PCE et chantier
 - En chantier, terres excavées et évacuées
 - En PCE, équipements et revêtements

Focus sur les éléments intégrés au calcul

- Rappel: répartition par lots propre au référentiel

 Exemples: lot fondations souvent intégré aux lots travaux VRD et gros œuvre avec répartition à refaire pour l'ACV (fondations dans lot 2 infrastructure)
 - clôture béton réalisée par le lot gros œuvre à intégrer au lot VRD
 - les éléments de serrurerie sont à répartir dans plusieurs lots (clôture intégrée au VRD)

Lot 1. VRD (Voirie et Réseaux Divers)						
Sous-lots	Composants intégrés	Commentaires				
1.1 Réseaux (sur parcelle)	Réseau gaz	yc raccordement				
	Réseau EP	yc raccordement				
	Réseau de chaleur ou de froid	yc raccordement au réseau urbain				
	Réseau électrique	yc raccordement, fourreaux, hors raccordement lié à la production d'électricité propre au lot 13				
	Réseau de télécommunications	yc raccordement et fourreaux				
	Puits canadien, réseau de géothermie horizontale					
	Réseau d'évacuation et d'assainissement des EP, EU et EV	yc raccordement et pompe de relevage si nécessaire				

Focus sur les éléments intégrés au calcul

Lot 1. VRD (Voirie et Réseaux Divers)		
Sous-lots	Composants intégrés	Commentaires
	Eléments pour le pompage d'eau	S'il y a nécessité de pomper l'eau (nappe trop proche), yc éqts hydrauliques, mécaniques et électriques des stations de pompage
1.2 Stockage	Système de pré-traitement des eaux	yc séparateurs hydrocarbures
	Système d'assainissement autonome	
	Récupération et stockage des eaux pluviales	yc bassin de rétention, d'orage, cuves, pompes et canalisations
	Stockage de combustibles	yc cuves, citernes, silos (fioul, GPL, granulés, etc.)
	Voie d'accès (sur parcelle)	yc accès PL, voitures, vélos, chemins piétonniers, etc.
	Aires de stationnement et garages extérieurs couverts ou fermés	yc garages vélos
1.3 Voirie, revêtement, clôture	Autres revêtements extérieurs	yc sol pour aire de jeu, dallage sur plots, platelage bois, etc.
	Ouvrages de soutènement des sols sur la parcelle	yc murs de soutènement, tirants d'ancrage, etc.
	Aménagement paysager : terrasses et petits murets	petits ouvrages de maçonnerie divers, hors clôture
	Eléments de clôture de la parcelle	en principe en limite de parcelle, yc grilles, garde-corps, claustras, portillons, portails, murs et murets

Exemples d'impacts carbone

Remarques préliminaires

Peu de données spécifiques disponibles -> Majorité de MDEGD

Difficultés à collecter les données au bon format : linéaires, diamètres, matériau, dimensions des regards, etc.

Exemple revêtements extérieurs

Donnée	Elément considéré	DVR	UF	IRC
MDEGD	Revêtements extérieurs enrobés	20 ans	1m²	31,3 kg éq. CO2 X 2,5 = 78,25
FDES Collective	Enrobés Office des Asphaltes	30 ans	1 m ²	15,9 kg éq. CO2 X 1,6 = 25,44
MDEGD	Revêtements extérieurs pierre	150 ans	1m²	66,4 kg éq. CO2
MDEGD	Revêtements extérieurs béton préfa	50 ans	1m²	35,5 kg éq. CO2

Exemples d'impacts carbone MDEGD vs FDES

Donnée	Elément considéré	UF	IRC
MDEGD	Réseau EU/EP polyéthylène	1ml	26,8 kg éq. CO2
FDES	Réseau EU enterré polyéthylène REHAU	1ml	18,1 kg éq. CO2
MDEGD	Réseau EU/EP PVC	1ml	63,3 kg éq. CO2
FDES	Canalisations EU aériennes GIRPI HTA-E	1ml	0,12 kg éq. CO2
MDEGD	Réseau EU/EP cuivre	1ml	19,8 kg éq. CO2

Majoration théorique des MDEGD de 30%... Ici jusqu'à 530%...

Exemples d'impacts carbone

Donnée	Elément considéré	UF	IRC
MDEGD	Clôture en acier de grillage soudé avec poteaux h 1,2	1ml	43,7 kg éq. CO2 + 37,8 de muret = 81,5
MDEGD	Clôture en bois h 2,4	1ml	112 kg éq. CO2
MDEGD	Clôture en aluminium h 1,8	1ml	592 kg éq. CO2

Les clôtures pleines (aluminium et PVC) ont un impact plus important. Souvent plus détaillées et plus impactantes en maisons individuelles.

Majorations des données par défaut

Un « mal nécessaire » en phase d'expérimentation

Incitation à produire des données pour les industriels

Problème de plausibilité de l'analyse

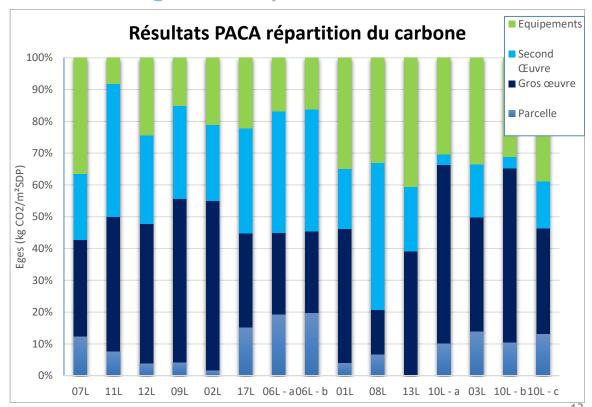
Difficulté pour utiliser l'indicateur comme outil de conception

A D E M E Agence de l'Environnement et de la Maîtrise de l'Energie

Focus méthodologique

Enjeux ACV aide à la conception

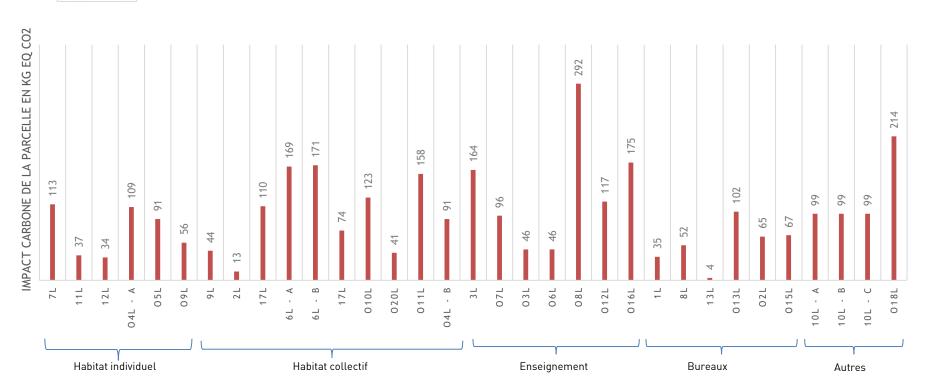
- Identifier les contraintes spécifiques impactant le VRD
 - Nombre de places de parking imposé au PLU
 - Parking aérien ou souterrain
 - ▶ Nature du terrain et topologie : fondations spéciales ? Déblais et/ou remblais ?
 - Surface de parcelle et revêtements à prévoir : accessibilité PMR, voie d'accès PL, usages extérieurs spécifiques
 - Positionnement des points de raccordement aux réseaux
 - Type de clôture imposée au PLU
 - Gestion des eaux pluviales à la parcelle



Rappel des résultats régionaux

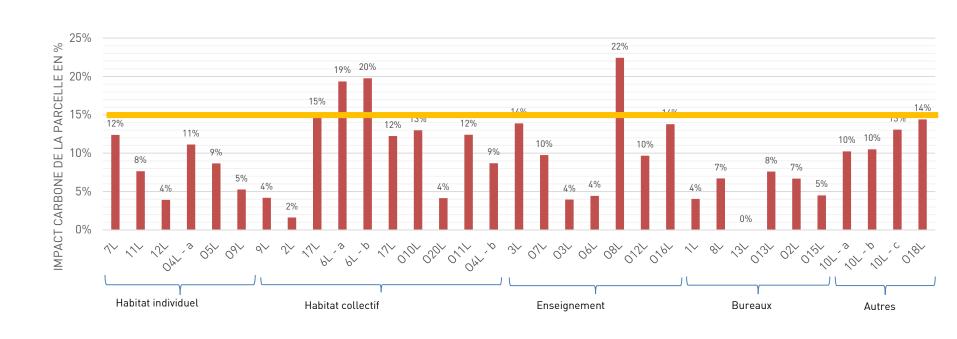
Résultats PACA Eges PCE par contributeur

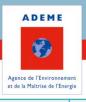
L'impact de la parcelle compte pour 0 à 20% des impacts carbone du projet.


On remarque que pour l'échantillon Occitanie il était de 5 à 12%.

A D E M E Agence de l'Environnement et de la Maîtrise de l'Energie

Décryptage des résultats Méditerranée


Focus sur l'impact carbone de la parcelle en valeur absolue



Décryptage des résultats Méditerranée

Focus sur la part carbone de la parcelle sur Eges PCE projet

Focus sur les projets à impact parcelle > 15%

Habitat collectif

06L-a et b C0 19 et 20% 169 et 171 kg

Opération de logement collectif en zone rurale

Répartie en 2 opérations : bâtiments séparés Parcelle de 4 250m² pour 900m² de SDP : compacité faible, répondant à un compromis entre habitat individuel et collectif, et au caractère rural

Cuve de récupération des EP 1,5% Peu de revêtements extérieurs : moins de 2% des impacts VRD Majorité de gaines et fourreaux en PVC impactant le 1.1 : impact réseaux de 151 kg éq. CO2 17L C2 15% 110 kg éq. CO2

Opération de logement collectif
Parcelle de 1884 m² pour 620m² de SDP
Voiries revêtues d'enrobés pour 56% de
l'impact soit 61kg pour 485m² avec MDEGD
Réseaux + gaines et fourreaux en PVC en tout
MDEGD 19kg pour 17% de l'impact
Pas de clôture identifiée

Focus sur les projets à impact parcelle > 15%

Enseignement

des EP

00L C0 22/0 272 kg cq.c02	O8L	C0	22%	292 kg éq.CO2
---------------------------------	-----	----	-----	---------------

Etablissement d'enseignement en zone rurale

Terrain spécifique en pente avec création de noues, reprises de dénivelés et création de murs enterrés

Prise en compte de travaux supplémentaires liés à des voiries publiques adjacentes : limites de parcelle pouvant être optimisées 1476 m² de chaussée revêtue d'enrobés pour un impact de 174 kg éq. CO2 soit 59% de l'impact du lot 1 (enrobés calculés avec FDES collective)
8% liés aux bordures et caniveaux, tout aussi longs et importants
12% liés aux réseaux, avec une bonne proximité au point de raccordement

Impact < 10% des ouvrages de gestion

Impact du sous-lot 1.3 représentatif :

Focus sur les projets à impact parcelle moyen

013L	C0	8%	102 kg éq.CO2
------	----	----	---------------

Projet de bureaux

SDP: 892 m² - Parcelle: 2 067 m²

Impact important des parkings aériens réalisés en enrobé avec calcul sur base MDEGD: 66kg soit 60%

Le reste est réparti équitablement entre la clôture et les réseaux

Bureaux

8L	C0	7 %	52 kg éq.CO2
----	----	------------	--------------

Opération de bureaux avec parking en superstructure

SDP: 3868m² - Parcelle: 4200m² Impact 1.2 important lié à la gestion des EP: cuve et réservoir représentent 59% de l'impact pour 36kg

Revêtements extérieurs faibles Réseaux maîtrisés à 15%

Focus sur les projets à impact parcelle moyen

Maisons individuelles

7L C0 12% 113 kg éq.CO2

Projet de maison individuelle constructeur

Fort impact de la clôture qui peut représenter jusqu'à 76% de l'impact parcelle pour une clôture PVC calculée en MDEGD

Les revêtements sont faibles, et selon le positionnement, les réseaux sont bien maîtrisés

Echantillon Corse

4 projets de maisons individuelles étudiées en parallèle pour un unique constructeur

Quand il n'y a pas de clôture, les réseaux impactent la majorité pour 5 à 7% d'Eges PCE, et le positionnement de la maison sur la parcelle est un critère très impactant (+100% d'impact pour un positionnement central versus un positionnement proche de la limite de parcelle)

Focus sur les projets à impact parcelle < 5%

Logements C1 2% - 13 kgéq.CO2 Bureaux C1 4% - 35 kgéq.CO2

2 projets de typologie différente sur une unique parcelle : répartition des accès et surfaces

Réseaux affectés à chaque projet Clôtures optimisées Parkings en superstructure

Parcelle occupée en quasi-totalité par les bâtiments : surface de parcelle logements 900m², emprise bâti logements 850m² Cheminements très faibles et mutualisés Impact majoritairement dû à la cuve de stockage des EP + 10% de clôture Tous autres items à faible impact car répartis entre les bâtiments présents sur la parcelle, située en bordure de voirie

Focus sur les projets à impact parcelle < 5%

Cas particulier

2 projets d'enseignement à faible impact parcelle

O6L	C0	4%	46 kg éq.CO2
-----	----	----	--------------

Groupe scolaire

SDP: 3530 m² - Parcelle: 4590 m² 858m² d'espaces extérieurs en enrobés soit 36% de l'impact, maîtrisé par l'utilisation d'une FDES collective réduisant l'impact de plus de 60% par rapport à la MDEGD

Autre revêtement impactant : dalle béton représentant 22% pour 1580m²

O3L C1 4% 46 kg éq.CO2

Centre petite enfance

SDP: 771 m² - Parcelle: 1590 m²

Impact chaussée de 15kg éq. CO2 soit 30%

pour 160m² avec FDES collective

Réseaux EU/EP et gaines PVC de 20%

Focus sur les projets d'enseignement

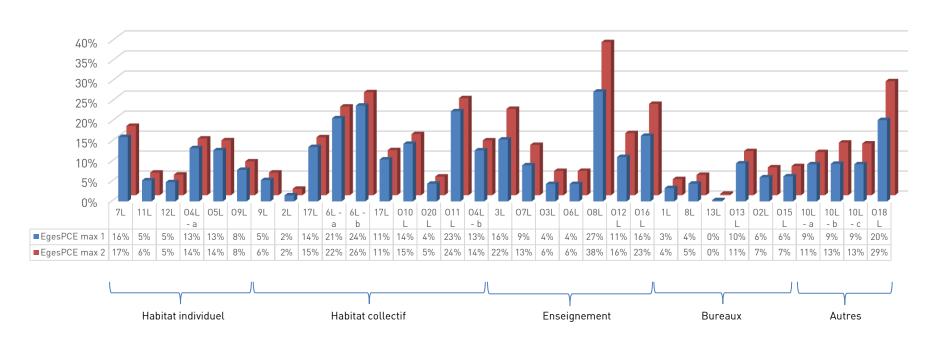
Analyse globale

Projets d'enseignement sensibles sur l'impact VRD → importants espaces extérieurs

Impact moyen du lot VRD de 10% lié notamment à la cour et aux stationnements Jusqu'à 14% pour les établissements avec terrain de sport (impactés jusqu'à 88% par les revêtements extérieurs par exemple pour le 3L)

Soit une valeur comprise entre 100 et 170 kg éq CO2 pour cette typologie Hors clôtures! Plus d'impact lié aux revêtements qu'aux réseaux contrairement à d'autres typologies

Les niveaux Eges PCE max sont plus élevés donc l'ensemble des impacts aussi


Attention donc selon les niveaux carbone visés

Impact moyen du lot VRD observé de 13 à 17% sur les groupes scolaires et jusqu'à 23% pour les établissements avec terrain de sport par rapport au niveau carbone 2

Décryptage des résultats Méditerranée

Focus sur la part carbone de la parcelle sur Eges PCE max

Rappel du calcul de Eges PCE max

2 seuils de performance 1 formule

$$Eges_{PCE} < Eges_{PCE,max,i} = A_{PCE,i} + M_{park}$$

 $A_{PCE,i}$: valeur pivot associée au niveau visé et à la typologie de bâtiment

M_{park}, modulation, exprimée en kg.eq. CO2/m2SDP, relative aux places de parking imposées par les contraintes d'urbanisme et effectivement réalisées

Rappel du calcul de Eges PCE max

Valeurs et modulation

Les seuils Carbone

 $A_{PCE,i}$, valeur pivot (kg eq. CO_2/m^2SDP) associée au niveau d'émissions de gaz à effet de serre des produits de construction et équipements.

En Kg eq.	Niveau de	Maisons	Bâtiments	Bâtiments à	Autres bâtiments
CO_2/m^2_{SDP}	performance	individuelles	collectifs	usage de	soumis à la
	visé	ou accolées	d'habitation	bureau	réglementation
					thermique
APCE,1	Carbone 1	700	800	1050	1050
APCE,2	Carbone 2	650	750	900	750

$$M_{park} = \frac{Nb_{Places\,Surface} \times 700 + Nb_{Places\,Souterrain} \times 3000}{SDP}$$

Echantillon OBEC Eges PCE max

Variation du niveau Eges PCE max

Rappel: variations liées uniquement à la modulation parking

GES kgCO2/m ² SDP	Maison individuelle	Immeuble collectif	Enseignement	Bureaux	Autres tertiaires
Carbone 1 Construction- EgesPCE,max	700 - 817	700 - 924	1051 - 1065	1050 - 1168	1050 - 1064
Carbone 2 Construction- EgesPCE, max	650 - 767	650 - 874	751 - 765	862 - 1018	750 - 914

Modulation à prendre en compte dans la réflexion amont sur l'impact de la parcelle. Niveau max carbone 2 très contraignant en Enseignement et Autres tertiaires.

Synthèse

Quelles tendances?

- Réseaux
 - Impact dépendant du positionnement du bâtiment par rapport aux points de livraison sur la parcelle
 - Impact fort des MDEGD
- Stockage
 - Dépend strictement du contexte environnemental du projet (Gestion EP, choix énergétique)
 - Impact spécifique à intégrer en sus le cas échéant

- Voirie, revêtement, clôture
 - Impact très important des enrobés notamment en enseignement mais aussi en logements collectifs et en bureaux si les parkings sont aériens
 - Clôture faiblement comptabilisée dans l'échantillon mais impact important en MI si pleines
 - Bordures et caniveaux 10% du sous-lot

OBEC - Objectif Bâtiment Energie Carbone

Groupe de Travail Envirobat

A vous de parler!

Partageons:

- nos retours d'expérience,
- nos interrogations,
- les points forts et points faibles observés dans la prise en compte du lot VRD

OBEC - Objectif Bâtiment Energie Carbone

Groupe de Travail Envirobat

Votre contact OBEC du jour Laetitia EXBRAYAT, H3C énergies 06 35 03 01 52 laetitia.exbrayat@h3c-energies.fr

